skip to main content


Search for: All records

Creators/Authors contains: "Turner, C. Heath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Binary mixtures of hydrocarbons and a thermally robust ionic liquid (IL) incorporating a perarylphosphonium-based cation are investigated experimentally and computationally. Experimentally, it is seen that excess toluene added to the IL forms two distinct liquid phases, an “ion-rich” phase of fixed composition and a phase that is nearly pure toluene. Conversely, n -heptane is observed to be essentially immiscible in the neat IL. Molecular dynamics simulations capture both of these behaviours. Furthermore, the simulated composition of the toluene-rich IL phase is within 10% of the experimentally determined composition. Additional simulations are performed on the binary mixtures of the IL and ten other small hydrocarbons having mixed aromatic/aliphatic character. It is found that hydrocarbons with a predominant aliphatic character are largely immiscible with the IL, while those with a predominant aromatic character readily mix with the IL. A detailed analysis of the structure and energetic changes that occur on mixing reveals the nature of the ion-rich phase. The simulations show a bicontinuous phase with hydrocarbon uptake akin to absorption and swelling by a porous absorbent. Aromatic hydrocarbons are driven into the neat IL via dispersion forces with the IL cations and, to a lesser extent, the IL anions. The ion–ion network expands to accommodate the hydrocarbons, yet maintains a core connective structure. At a certain loading, this network becomes stretched to its limit. The energetic penalty associated with breaking the core connective network outweighs the gain from new hydrocarbon–IL interactions, leaving additional hydrocarbons in the neat phase. The spatially alternating charge of the expanded IL network is shown to interact favourably with the stacked aromatic subphase, something not possible for aliphatic hydrocarbons. 
    more » « less
  2. null (Ed.)
    For many years, experimental and theoretical studies have investigated the solubility of CO 2 in a variety of ionic liquids (ILs), but the overarching absorption mechanism is still unclear. Currently, two different factors are believed to dominate the absorption performance: (a) the fractional free volume (FFV) accessible for absorption; and (b) the nature of the CO 2 interactions with the anion species. The FFV is often more influential than the specific choice of the anion, but neither mechanism provides a complete picture. Herein, we have attempted to decouple these mechanisms in order to provide a more definitive molecular-level perspective of CO 2 absorption in IL solvents. We simulate a series of nine different multivalent ILs comprised of imidazolium cations and sulfonate/sulfonimide anions tethered to benzene rings, along with a comprehensive analysis of the CO 2 absorption and underlying molecular-level features. We find that the CO 2 solubility has a very strong, linear correlation with respect to FFV, but only when comparisons are constrained to a common anion species. The choice of anion results in a fundamental remapping of the correlation between CO 2 solubility and FFV. Overall, the free volume effect dominates in the ILs with smaller FFV values, while the choice of anion becomes more important in the systems with larger FFVs. Our proposed mechanistic map is intended to provide a more consistent framework for guiding further IL design for gas absorption applications. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)